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ON THE LEAST FAVORABLE CONFIGURATION OF A
SELECTION PROCEDURE BASED ON RANKS

by

Shanti S. Gupta and Takashi Matsui
Purdue University Purdue University and

Dokkyo University

ABSTRACT

+rt tm considerjtwo types of statistics based on the sum of combined

(Wilcoxon type) ranks and vector (Friedman type) ranks. Underlying populations

are supposed to belong to the location or scale parameter family of d'Aributions.

Two approaches - subset selection and indifference zone - of inking and

selection procedures based on these statistics ar. considered ir &n asymptotic

. framework for selecting the population with the largest parr er value. The

least favorable configurations of parameters are discussed I computing the exact

moments of these statistics and introducing an assumptior jf order relation

* between the gaps of parameters.
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ON THE LEAST FAVORABLE CONFIGURATION OF A
SELECTION PROCEDURE BASED ON RANKS

Shanti S. Gupta* and Takashi Matsui
Purdue University Purdue University and

lDokkyo University

I. INTRODUCTION

Let k populations wI1 729 k,"' 7k be given. A cumulative distribution function

* (c.d.f) of population wi is denoted by Fei (x), which is assumed to belong to the

location or scale family of distributions. A parameter ei is taken from some

interval e on the real line. F i(x) is expressed as F (x) = F(x-e i) or

F (x) = F(X/o i) depending on whether it belongs to location or scale family.

F Oi(x) will be denoted as Fi(x) or Fi for simplicity. Let the ordered parameters
,0".

- of 61, e 2 , . . . ,' k be denoted as o[1] < [2] < ... < [k]. Then we have

F0[] (x) > F (x)L.. IF (.1)- -~]- ] - [fl]

for all x. We call the population associate with F ([k(x) the best population.

Hereafter, we assume that the population 7k is the best population, without loss

of generality.

Take n observations XilXi2,...,Xin from populations wi(i=l,2,...,k) and

consider the following two types of ranks and rank sum statistics. As we mention

* later, note that when we are dealing with scale parameters, absolute values of

the observations are used for obtaining the ranks.

(I) Combined (Wilcoxon type) ranks

"*rhe re search of this author was supported in part by the Office of Naval Research
Contract N00014-84-C-0167 at Purdue University.
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Consider the combined rank of observation Xij among all kxn observations. We de-

note the rank of X by RO) where R 1 ) s if X is the s-th smallest among
ii Ij13

Xll,Xl 2 ,...XIn ... Xklxk2 ,...,Xkn. Also we define

n (1)Hi 1 I F_ Ri i = 1,2,...,k. (1.2)
1 n j

v and

H,) (H l , ") ..., l)(1 3

(II) Vector (Freedman type) ranks

Consider the rank of observations Xij among Xlj,X2j, ,Xkj. We denote the

" rank of X by RQ ) where R!2 ) = s if Xi is the s-th smallest among

.(,jX2j,...,Xkj (j = 1,2,...,n). Rank sum statistic is defined as

H R(2) i 1,2, ,k (1.4)

and

H (H](2) H 2 )  ..,H 2 )'. (1.5)

Now let us consider the following two approaches of ranking and selection

procedures of selecting the best population based on rank statistics H(l) and
(2). The first approach is a subset selection approach due to Gupta (see Gupta

and Panchapakesan (1979)) and we select a subset of populations using following

selection procedures.

i/ ° = o o

-- ',-, ''',,, ''-.'- , ".-[e", ;.',', ,,".,,',. , "" ," . -", , ,"," , ,,-.' " -.- ' , ,-,. .-. " - " . , .-,- ,- .

, w . , - - , Ir - - . ' ', . & - "-- - : : , m = " ' , , ' -' ', , - ',.. . . . . . .. . . . . . . . .. .'... -.-. .-. .. '... . . . . . .-. ,..'.
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R(-,j,l): Select fi if and only if Hi(a) > max H) ) -d:

i = 1,2,...,k; d > 0; 0 , = 1,2. (1.6).
These same types of rules are used for selecting the best population with

either largest location (0=1) or scale (0=2) parameters, using statistics

H(0) , - 1,2. The use of these rules is warranted by the Theorem 4.2 which we

mention later. In fact, Hk(a) corresponds to wk in the sense stated in the theorem

for both location and scale parameter cases. A correct selection (CS) is said to

occur if and only if the best population (in our case rk) is included in the selec-

ted subset. Our aim is to select a subset satisfying

inf P(CSR(a,8,l)) > p* (1.7)

where (,, = 1,2; 1/k < P* < 1 and l = {e = (al,e 2 ,...,ek); ieE i = 1,2. kj.

Another approach we study is the indifference zone approach due to Bechhofer

(1954). The procedure is stated as follows.

R(%,P,,2): Select the population associate with Hk(") as the best. (1.8)

In this case, the rules R(a,B,2), (%,8=1,2 are requested to satisfy the following

probability requirement;

P(CSIR(a,B,2)) _ P* whenever *0(Ok,Oi ) > ca + 6* (1.9)

where a, U-= 1,2, I/k < P* < 1, 6*> 0 is a given constant.

4

.4°

* - * - : - :k-. ... , , -. - - . , .' ., m @ - :. •, - 1.',. . .. . e ,.', . . .
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=le i  - 8. when o =  1

'i/ei when a = 2

and

n 10 when 8 = 1

I when 8 = 2

Selection procedures - both subset selection and indifference zone approaches

- based on the statistics HO ) are studied by many authors including Lehmann (1963),

Bartlett and Govindarajule (1968), Gupta and McDonald (1970), Purl and Purl (1968),

(1969), Alam and Thompson (1971). Also procedures based on H(2 ) are studied by

McDonald (1972),(1973), Matsui (1974), Lee and Dudewicz (1974). A summary of

procedures based on ranks is seen in Gupta and McDonald (1980), Gupta and

Panchapakesan (1984).

A parameter configuration which gives the infimum of the probability of a correct

selection is called the least favorable configuration (LFC). It is fairly trouble-

some to obtain the LFC for both rules R(a,8,1) and R(a,0,2) using statistics

H( l ) H( 2 ) and still an open question in general (a,o = 1,2). Including the counter

example due to Rizvi and Woodworth (1970), Lee and Dudewicz (1974) and several

approaches done by above cited authors, perspective discussion on the LFC is

given in Gupta and McDonald (1980).

A purpose of this paper is to discuss the LFC in an asymptotic framework. An

order relation is assumed to hold between the gaps of parameters (1.10). This

assumption is similar to those considered by Puri and Purl (1968),(1969), Alan

and Thompson (1971). The LFC's of the procedures are studied by using the exact

moments of the combined and the vector rank statistics H(a) 1,2, fo
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location and scale parameter cases (e = 1,2) and for both subset selection and

indifference zone approaches.

In Section 2, asymptotic distributions of H( =
),  1,2 are considered under

the assumption of order relation between gaps of parameters. PCS and LFC are

investigated in Section 3. Moments results are given in Section 4 as an Appendix.

2. Asymptotic Property

2.1 Moments of Ranks

Let us define the mean vector and variance-covariance matrix of H(l ) by

(1) and A (1) according as we are dealing with location (B = 1) or scale (o = 2)

parameters. Under the population model we considered in Section 1, the elements
(1) A_(1)

of !jl) and are given as follows. These relations are obtained from more

general results given in Theorem 4.1 of Appendix.

I
Of G*dF i + I i = 1,2....,k (2.1)

i.

Ik(3n-l)JG*dF. - 2k(2n-l)fFiG*dFi + k2nfG*2dFi

.kH*dFi  k2n(G*dFi) 2  (n-l)y(FmdFi)2 _ , I = ij

kn(2 - IFjdFi)fG*dF + kn(2 - IFidFj )G*dFi - n fFmdFiIFmdFj

- 2knfFjG*dFi - 2knFiG*dfj + fFidf jFjdFi

+ f Fi 2dF + IF2 dF. - 1 i 0 j (2.2)

where

G*x k F Irj(x) (2.3)kWI i

;-.,.. .'. - -,-.: -....... , .. -. ..-. ,.-. .•. .... .. . ,. . . .*-.... . - .. . . .- ., -.- . -. -.. . .- - -..- n .. .-..-.-
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k 2

H* (X) : Fj (x) (2.4)

j=l

In case of vector rank R (2), the moments results are given in Matsui (1985)ii
from which we obtain mean vector (2) variance-covariance matrix A (2)fro2 of

statistic H(2) as follows;

(2) = knjGdFi + , i = l,2, ,k (2.5)

n[2kfG*dFi - 2kfFiG*dF i + k2fG*2dFi _ kfH*dF

- k2 (fG*dFi)2 - 1/12]. i j

X(2) =
Bij 4n[k(2-fF dFi )fG*df. + k(2 - JFidFj )fG*dFi

k
_ " IFFmdFiFmF - 2kfFjG*dFi - 2kfFiG*dFi
m=l

+ fFidF.jFjdFi + JF.2dFj + fFj2dFi - 1], j (2.6)1 (2.6)1 3

2.2 Assumption

Let the gap of parameters 9i and 6 be p a (Oi,e ) as given in (1.10), according

as the c.d.f. F (x) be location (8 = 1) or scale (0 2) family of distribution.

When we treat the scale parameter, both of combined rank or vector rank 2 )

ij r i

are given to the absolute value of observation X.. from c.d.f. F (x)13 o i

(i = 1,2,...,k; j = 1,2,...,n). Thus the c.d.f. G ei(X) of Ix ij is given as

G (x) =F (x) - F (-x) or

" G (x) = G(x/.) = F(x/e i ) - F(-x/i), x >_0 (2.7)

We assume the following relation to hold between the gaps of parameters

.'

)."
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i,~j). Note here that although we use the same notation Fi(x) for both

location or scale cases, we should read c.d.f. Fi(x) to be Gi(x) given in (2.7),

in case we are dealing with scale parameter.

We assume that

1 (Oi'ej) = ca + ij n-2 + o(n- ) a = 1,2. (2.8)

where ca is given by (1.11).

Then putting

IBi j  vrn{fF(x)dFi(x) - fFi(x)dfi(x)} (2.9)

we have the following lemma.

Lemma 2.1

For q, a(oi,j) (8 = 1,2) given by (2.8), we have the following

.. K .1  + o(1) (2.10)

where

K . ff2( x)dx when s = 1hj, 2 (2.11)Kii K 2i j fxf2(x)dx when a = 2

i j = 1,2,. .. ,k; i #j.

Example:

When F(x) is normal N(0,1), we have for q,(ei,ej) given by (2.8).
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"I + o() (2.12)

i : I + o() (2.13)2ij K2ij.5.

2.3 Asymptotic Distribution

Let us define

I i (Hk - 1 ) H = 1,2 (2.14)

that is

W()= A H(a), a = 1,2. (2.15)

whr (a) =(W (a), W 00 .. .. (a) P A (-= andEwhere 2 ' Wk )) - (k-)' -(k))(k-I)xk a -(k-1

is a unit matrix of order k-1, Jk) (1,1,...,1) kxl. W has a mean vector
4(k) m)

variances-covariance matrix such that

.]Ai a)  (2.16)

() (a)A (2.17)

Elements of a) and F(a) are given as

(a) (,(a) - ' (a) , = 1,2,...,k-I (2.18)

k pk;

I [.* * .*.,..... . . .

- S * -
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(a ) + (1 2() ( ) , ( () ~ , ,k-1 (2.19)
'ij n n ij - ^kj + XOkk

where and are given by (2.1) through (2.6).

Now under the assumption (2.8) using lemma 2.1, we have for B = 1,2 and

a= 1,2

k k
() j1 FjdFk nf FdF.}

k-1-

k-l k (a
KBkj - jj( Ki j  ( z )) (2.20)

j=

j~i

as n •, where K ij is given by (2.11). Also since (2.8) is assumed, we have

-k/12 for i j

IiJ (k2 _ k)/12 for i j

and
-(k + 1)/12 for i j

2ij 2
2k- 1 )/12 for i =j

Thus goes to the following limit.

(' I2v for i=j

2iJ v forij (2.21)

whe re

I k2/12 when a = 1
v (2.22)

k(k+l)/12 when a = 2

" . . ..-.*. . . ,.** % . - . - k A
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Thus by applying the central limit theorem, we have the following asymptotic

distribution of W(a).

W -( , = 1,2 (2.23)

where ( = ,-(a) -(a) -(a)w here , n 2 ,.,(k-l)) with elements given by (2.20) and

E8a) v(E + ) (2.24)Z = a (t(k-l) =(k-I)"

where G(k-l) =

3. PCS and LFC

Since the asymptotic distribution of W)(a,8=1,2) is given by (2.23),

probability of a correct selection for rule R(a,a,m) (a,B,m=l,2) is given as

o..-'," P(CSIR(ct,B,m)) = Pr(W(a) > - 6(B'm)J(kl))

= Pr(U(a) < ( W + ((31m)J(k)l

where

de/ when m = 1
6(B,m) = (3.2)

0 when m = 2

=W (W,(QI) (ct))/,/ (3.3)

and
'.-
a""

a) N(O~k1 ), .(k-1) + Ek-l) )  (3.4)a+



J For the subset selection approach (a - 1), since

an-' 
k K • > 0

KBkj 0i3-
-, and

for large n, we have

" - Lk-l)

*: Also for indifference zone approach (a = 2), taking the requirement

- (1 k i)  > ca +

in mind, we have

2(kf2(x)dx)vwn 6 l*J when B = I2 12*

- (kfxf2(x)dx) vi 6+-* J when B = 2

Thus we have the following.

Theorem 3.1

"* Under the assumption of order restriction (2.8) and for large n, the LFC of

* the PCS for rules R(a,0,l) (c,1=1,2) are given when

.ki = 0, i = 1,2,...,k-l; n,B 1,2 (3.5)

and for rules R(o,B,2) (a,0=1, 2 ) are given when

Ki= c, + 6 0 * i = 1,2,...,k-l; a,8=1, 2 . (3.6)

Under the LFC, P(CSIR(a,O,m)) is evaluated as follows.

.. ..
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P(CSIR(a,B,m)) > Pr(U( ) < ((y(8,m) + 6(k-m))/v.T-J1ki)) (3.7)

where v is given by(2.22), 6(a,m) is given by(3.2) and y(S,m) is defined as

y(b,l) = 0 for a = 1,2
,) (kff 2(x)dx)v/ l *6 2 .  for a = 1 (3.8)

( o2 ) = 6*fr2
l(kjxf 2(x)dx)vrn- 62* =2

By using the evaluation formula of the integral over the domain of the normal

of the type (3.4), (see Gupta (1963)), we have the following reduced form of the

expression (3.7).

P(CSjR(a,s,m)) > f {kIx + ((y(a,m) + 6(B,m))//-)J d(x) (3.9)

for a,B,m = 1,2, where P(x) is the c.d.f. of Normal N(0,1).

The (relative asymptotic) efficiency of two selection procedures RI and R2

is considered in the following way. Let us define the efficiency of procedure

R2 relative to procedure R1 be the ratio of sample sizes

Eff(R1 ,R2 ) = nl/n 2  (3.10)

where n. satisfies

P(CSIRi)LFC = P* , i = 1,2.

Then using the Theorem 3.1, we have the following.

_..

I
o

, .. * b 4
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Eff(R(l,,,I),R(2,B,l)) = (1+1/k)(d/d 2 )/ , a = 1,2,
= 2 = 1 , 2 ,

Eff(R(a,1,l),R(a,2,1)) = (d1 /d 2 ) . = 1,2,

Eff(R(I,B,2),R(2,B,2)) = k/(k+l) , B = 1,2,

Eff(R(ct,l,2),R(a,2,2)) = (616 2*/(1,2))2 (fxf 2 (x)dx/fV2 (x)dx) 2 , a= 1,2.

4. Appendix

Let us give the moments of combined ranks under the following population

model.

Let k populations nI , r2 "' k be given. The c.d.f. of population ws is

denoted by Fs(x) and is assumed to be continuous in x(s-1,2, ...,k). Take ns

observations Xsl, Xs2, ... , Xsn s from population ws (s = 1,2. ... , k) and consider

" the combined (Wilcoxon type) rank Rsi of Xsj in such a way as we stated in Section

. 1. Then we have the following mean, variance and covariances of the rank Rs j .

Theorem 4.1

E(R s) = NJGdF + 1 (4.1)

V(Rsj) = 2NfGdF s - 2NJFsGdFs + N2'G2dF - NfHdFs - N2 (JGdFS)2 - 1/12 (4.2)

Cov(R siRs) 3NfGdF 4N dF - ( j Fmd Fs
) 2 - 1/12 (4.3)si S3 s s milnM

Cov(R si, R N(2 - fFtdFs [GdFt + N(2 - fFsdFt)fGdFs

k
_ Y nmjFmdFslFmdFt - 2NfFtGdFs - 2NJFsGdFt
m=1

+ IFsdFtJFtdFs + JFs 2dFt + JFt2dFs - 1 (4.4)

where s,t = 1,2,...,k, stt; ij = 1,2,...,ns, itj; j'- 1,2,...,nt and

A.I'.**A.- AS ~ % A% A 9
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k
N = m  (4.5)

k
G(x) = 1 MW (4.6)

k F 2 (4.7)

Proof:

Let us give the sketch of proofs for (4.1) and (4.3) above. The remaining

" results are also obtained similarly.

Mean:

-. Pr(R11 = s) = Pr(al of Xl's, a2 of X2 's,...,ak of Xk's

< X I< (n -a,-l) of XY1s, (n2-a2) of X2 1s,..., (nk-ak)

of Xk'S) (4.8)

where ai(i=l,2,...,k) is an integer such that

0 <al <n- 1, 0 <ai <ni(i=2,3,...,k) (4.9)
%* k

Saj s -1(4.10)
j=l

and "ai of X1's", "(ni-ai) of Xi s'' should be read that a. variables out of

(X il, X , ..., Xin i ) and remaining (n1-at) variables, and so forth. Further,

summation i is taken for all tuples (al ,a2,...,ak) of integers which satisfy the

relations (4.9) and (4.10). From (4.8), we have

-,

0d % ' .% " " . .. ".-°. '.%,uj 
%

. . % %
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N(R N nQ-1\,/ n 2 . nk0 F 1 aF2 ... Fak
- ER1 ) f~ Y a akL (a )1 2 Fk

n -a1 -  na nk- a

x (1-F1 )
1 1  (1-F2 ) ... (I-Fk) k dF1  (4.11)

By changing the order of summation, we first add for s, and we have

E(R n ) V n2) ... (n -) Fa 1Fa2 ... Fa 2

n -a -a nk.I -ak- l  k-I

x(1-F1 ) n1-1-1(1-F 2  a 2...(- )nkla k-1 (nkFk + k a. +l lFl = 1)dF1 ,

where the summation is taken for all tuples (al,a 2 ,... ,akl) of integers which

satisfy the relation (4.9). Adding in turn for ak. , ak- 2 , ...,a1 we have the

result for E(RII).

-" Covariance:

For s < t, we have

Pr(R11 = s, R 21 t) = I Pr(aI of XYs, a2 of X2 's, ..., ak of Xk'S

<Xll <b I of Xl's, b2 of X2
1s, ..., bk of Xk's <X 2 1 <_cl of X S, c2 of

SX2
1s, ... ck of XkIS) (4.12)

where ai , bi, ci(i 1,2,...,k) are integers such that

ai + b = = ,2,...,k (4.13)

j a =s -1, j b t- s - , c = n - t (4.14)

and i = ni - 1 for i = 1,2, i =n i for i = 3,4....,k.

'p
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Sumation Is taken for all tuples (al,...,ak,bl,....bk,CI, ... Ck)which satisfy

the relations (4.13) and (4.14). Then

II- s t Pr(R11 = s, R2= t)
s <t

k
f ff I I Y Pi(x,y)dF(x)dF 2(Y) (4.15)

X<Y s~Ct B 1=1 F(xd 2 y

; where

Pi(xy) = (aib,c i  Fi (x)(Fi(y)-F(x)) b(lF(Y)) c i I 1,2,...,k.

By changing the order of summation, we first add for s then for t and we have
k-I

1 f f C Pi(xy)dFI(x)dF2(y)x<y s<t li-

where k-i k-i /k-I \ 2  /k-1 \/k- \
Cl ~ + 01 k a +V kIb. + kl a j)2 ( jaj/(k'ibj,

I C1 1 j=l jIb j laij+ .alYbJ

and

aI = nk(nk'l)Fk(X)Fk(Y) + 3nkFk(x) + nkFk(y) + 2

lI = nkFk(x) + nkFk(y) + 3

= nkFk(x) + ".

Summation i is taken for all tuples (al,...,ak-lb ....,bk lcl .... Ck- l ) which
1

satisfies the condition (4.13). By adding in turn for a set (ai,bici)

i = k-1, k-2,...,l, we have reduced form of I. By proceeding the similar steps

for I s t Pr(Rll = s, R21 = t), we have the covariance relation for Coy (R1 I,R21).
s>t

For rank sums

ns
Ts  R i RS, s =192,...,k (4.16)

j=l 5

C- ( ., - , ' ' , : 2 . ' ' : C , ' , = . .. , v ' = ' ' ; :
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we have

E(T) = n sE(Rsj) , s = 1,2,...,k (4.17)

Cov (TsTt) = nsnt Cov (RsjRtj,). s,t = 1,2,...,k, s # k (4.18)

and for variance

ns  ns

V(Ts ) = Y V(R s) + Y Cov (RSiRsj)
j=l i j

= Nn s (3ns-1 )JGdF s - 2Nns(2ns-1)JFsGdFs

+ N2nsJG 2dFs - NnsJHdFs - N2ns(JGdFs)
2

k
- ns (n s-1) 1 n m(FdFs)2 . ns2 /12 (4.19)

Especially if Fi(x) = F(x) for all 1, then we have

E(T s ) = n s(N+1)/2 (4.20)

V(T s) = n s(N-n s)(N+l)/12 (4.21)

Coy (Ts Tt ) = -nsnt(N+l)/I2 (4.22)

Also for k=2, we have the following

E(Ti)= ni(ni+l)/2 + ninjfF dFi, i, j = 1,2; ji 1 (4.23)
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V(Ti) = nin (2n i - l)fFj dFi + nlnj(n -)fF. 2 dFi

+ nin (n i -1 )fFi 2 dFj nlnj(ni+n jl )( fFj 2 dFi) 2  n n (n 1)

. i,j = 1,2; i / j (4.24)

Cov (TI ,T2 ) nIn 2 EnlfF1 dF2 +n2fF 2 dF1 - (nl+n 2 -1)FIdF2fF 2dF I

- (n1-1)fF1
2 dF2 - (n2 -1)fF 2

2 dF1 - 1] (4.25)

Finally we give a property which lies between ranks and distributions (para-

"_ meters). Let Fi(x)'s be stochastically increasing family of distribution specified

by parameter ei . Then we have the following.

Theorem 4.2

E(RS ) > E(Rt) if and only if FS5  Ft where s,t 1,2,...,k.

4.m

..
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